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AbstracGA method is developed for calculating for a liquid metal the total 
number of electronic states below an energy E. The method remains valid 
when the electron-ion pseudopotential is energy dependent. It is based upon 
an idea of Lloyd (1967), which we have extended and developed into a form 
suitable for numerical calculation. Calculations for liquid bismuth reveal no 
sharp structure in the density of states. The bandwidth for five valence 
electrons per atom is 1.18 Ry, which corresponds to 8 bandwidth effective 
mass of 0.63 electron mas ,  compared with the h t  order perturbation 
estimate of 0.87. 

1. Inhroduchion 

The number of calculations of the electronic structure of liquid 
metals is very small in comparison with the number of such calcula- 
tions for solid metals. ' This fact reflects both the greater novelty and 
the greater difficulty of the problem for liquids. For example, it is in 
principle not possible to classify electron states by a wavevector k 
or to  obtain a unique energy versus k relation. 

Edwards (1962) showed how the density of electronic states per 
unit energy could be obtained from a perturbation expansion of the 
single particle Green function averaged over the ensemble of possible 
atomic arrangements appropriate to the liquid state. The first 
quantitative application of Edwards' formalism was by Ballentine 
(1966), who found the density of states of liquid A1 and Zn to be 
nearly free-electron-like, but predicted that of liquid Bi to differ 
significantly from the free-electron parabola. Ballentine represented 
the electron-ion interaction by a local pseudopotential derived from 

t Supported by the National Research Council of Canada through a post- 
graduate scholarship (T.C.) and operating grants (L.E.B.). 
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166 T. CHAN A N D  L. E. B A L L E N T I N E  

the Fermi energy shell matrix elements of the Heine-Abarenkov 
model potential. 

If the imaginary part of the Green function is very small one can, 
a t  least approximately, define a dispersion relation relating electron 
energy E to a wavevector k. By such a method Watabe and Tanaka 
(1964) predicted a very large peak near the Fermi energy in the 
density of states of liquid Zn. However, their result was shown to be 
entirely spurious (Ballentine, 1966), due in part to their use of a very 
crude approximation (an exponentially screened coulomb potential) 
to the electron-ion pseudopotential. Shaw and Smith (1969) have 
performed a similar calculation for Li, Cd, and In,  using a non-local 
energy-dependent model potential. Their results resemble the 
densities of states of the corresponding solids but with all van Hove 
singularities smoothed out. Only for Li is their result much different 
from the free-electron curve. A similar calculation for nine metals 
has been reported by Srivastava and Sharma (1969), however, they 
give only the density of states a t  the Fermi level and not the entire 
curve. The limitations of this approach are the use of second order 
perturbation theory and the assumption of an E ( k )  relation for a 
liquid. Both become suspect as the electronic structure becomes 
non-free-electron-like, which is of course the most interesting case. 
Although one can artificially define an E (k) for a liquid such that i t  
yields the correct density of states, that  same E (k) cannot be used 
for other applications such as the Boltzmann equation (Lloyd, 1968). 

The work of Shaw and Smith (1969) indicates that  retaining the 
non-local and energy-dependent nature of the model potential will 
tend to  smooth out some of the structure predicted from a local 
pseudopotential. This is not surprising, for Ballentine (1966) found 
that the relative position of the zero of the pseudopotential (in 
momentum space) and the peak of the structure factor is an im- 
portant parameter, and for a non-local pseudopotential the zero is 
effectively varying with energy or momentum. It requires only 
some additional numerical computation to include a non-local model 
potential in a calculation such as that  of Ballentine (1966), but the 
energy dependence of the model potential causes difficulties in 
principle for the Green function method. It is the solution of these 
difficulties which is the subject of this paper. 

The work of Ballentine (1966) and the present paper are not 
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E N E R Q Y  D I S T R I B U T I O N  O F  ELECTRONIC S T A T E S  167 

strictly perturbation methods since infinite classes of terms are 
summed by means of integral equations. Nevertheless, they are 
weak binding approximations. 

Cyrot-Lackmann (1966) has developed a tight binding approxi- 
mation for the moments of density of states function. It is applicable 
only to strictly bound bands, since moments do not exist for free- 
electron-like bands. Lloyd (1967) has developed an interesting 
theory which uses the phase shifts of (assumed) non-overlapping ions 
rather than a pseudopotential. No realistic calculations have been 
done with his method, but he has shown by means of a simple model 
that  his theory can describe the formation of a gap between a '' free )' 
and a " bound ) )  band aa the potential strength increases. Rousseau, 
Stoddard and March (1970) have developed a form of strong coupling 
theory based on the density matrix, rather than the Green function, 
and have applied their method to Be. They find the density of states 
to be qualitatively similar in the liquid and solid phases, and quite 
different from what it would be for a random distribution of atoms. 

This brief review is believed to cover all quantitative calculations 
of the electronic density of states for liquid metals which have been 
published (excluding one dimensional models and disordered lattices). 

2. The Problem of an Energy Dependent Potential 
I n  order to see the difficulty introduced by the use of an energy 

dependent model potential, i t  is useful to review the Green function 
formalism (Edwards 1962; Ballentine 1966). The Green operator 
is defined aa 

(1) G ( E )  = ( E  - H)-' 

where H is the single electron hamiltonian, and I 
its eigenvectors and eigenvalues. The spectral function, 

> and En are 

p (k, E )  = lim ( - l/n) Im {< k I G ( E  + iq) 1 k >} 
3 4  + 

= zn 1 < k I +n > 1' 8 ( E  - En), (3) 

tells us the momentum distribution of electrons with energy E. The 
trace of the spectral function (considered to  be the diagonal matrix 
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168 T. C H A N  AND L. E. B A L L E N T I N E  

element of the spectral operator) gives us the density of states per 
unit energy per spin state, 

C P ( k , E )  = - E n )  
k 

= n ( E ) .  (4) 

Suppose now that we take the hamiltonian to be H = p'/2m + 
W ( E )  ( = H ( E ) ,  say), the electron-ion interaction being represented 
by the energy dependent model potential W (E).  Its eigenvectors 
and eigenvalues will be energy dependent, 

H (El I +n ( E )  > = en ( E )  I +n ( E )  >- ( 5 )  
The true energy levels are obtained when the parameter E in the 
model potential is equal to the current eigenvalue, that is, 

En = En(En)* (6) 

Now, when we try to calculate the Green operator, as only we know 
how, from (l) ,  we obtain results similar to (2)-(4) but with E , ( E )  
instead of the true eigenvalue E n .  Thus, in place of ( 4 ) ,  we obtain 

-1 

C 6 ( E  - e n @ ) )  = c ( 1  - 51 } 6 ( E  - E n ) ,  
n n aE B - B ,  

(7) 

which is not equal to the density of states. 
Lloyd (1967) showed that one could formally circumvent this 

difficulty by calculating the integrated density of states using the 
equation 

(8) 
- 1  N ( E )  = -- Tr Im [In {H - ( E  + i~))]. 

It is easy to show that [8] indeed evaluates the total number of 
eigenstates up to the energy E regardless of the energy dependence 
of the model potential. Thus, from (8),  we have 

T 

- 1  
2Ti 

- 1  
2n-i 

N ( E )  =-Tr [ ln{H- (E+iq )} - In{H - ( E - i y ) } ]  

-- - c [In {En ( E )  - ( E  + iT)) - 1n {En (El - ( E  - iT)H 

where the step function 8 ( x )  is equal to unity for x > 0 and is zero 
for x < 0. 
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E N E R G Y  D I S T R I B U T I O N  O F  ELECTRONIC STATES 169 

The last step follows from the fact that the value of the logarithm 
changes discontinuously from - i.rr to + i~ as one crosses the branch 
cut on the negative real axis. Equation (9) says that N ( E )  is equal 
to the number of eigenvalues E ,  ( E )  of H ( E )  which are less than E. 
The true eigenvalues En are determined from Eq. (6). The number 
of these below energy E will also be given by N ( E )  provided that 
&,,/aE is less than unity, that  is as E increases E,(E)  must not 
increase so rapidly that a level E ,  from just below E rises above E. 

3. A Perturbation Expansion 

The formalism for the integrated density of states presented in the 
last section is similar to that of Edwards, except that  where the 
Green function occurs in Edwards’ formalism, we now have the 
logarithm. It might appear from the similarity that we could em- 
ploy Edwards’ technique of expanding in a formal perturbation 
series, taking the ensemble average and resumming the terms. How- 
ever, an examination of the diagrammatic expansion reveals that 
such a straightforward analogy with Edwards’ method will not work. 

Consider the operator 

hi ( H  - E )  = In { ( H ,  - E )  (1 - B O W ) } ,  (10) 
where H = H ,  + W ,  and Go = (E - H,)-l is the free electron Green 
operator. The energy dependence of B, and W is not explicitly 
indicated. Now In (AB) # In ( A )  + In (B),  in general, if the 
operators A and B do not commute. Nevertheless, one still has 
equality of the traces of the operators. 

Tr In (AB)  = In (det 1 AB [ ) 
= In (det A )  + In (det B )  

= T r I n A  + TrInB.? (11) 
From (8), (lo), and (ll), we then obtain 

1 N ( E )  = - -Tr1m{h(H0-E)+1n(1 -G,W)} .  
7T 

The first term is just N o  (E) ,  the number of energy levels below E for 
the free electron hamiltonian H ,  . 
t W e  are indebted to Dr. P. Lloyd for pointing out this relation. 
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170 T. CHAN A N D  L. E. B A L L E N T I N E  

To evaluate the second term it is natural to try a formal expansion, 

- In (1 - GoW) = GoW + $COWCOW + QGoWQoWQ0W + - a * .  

The ensemble average, (< k I - In (1  - G,W) I k of the 
diagonal matrix element in the momentum representation can be 
represented by the diagrammatic series shown in Fig. 1. The nota- 
tion here is the same as that of Ballentine (1966). A solid line repre- 
sents a factor ( E  - k2)-1, an intersection of two solid lines with a 
dashed line represents a factor < k I w I k' >, the matrix element of 
the screened model potential for a single ion, and a node connecting 
n dashed lines represents a factor c,, related to the n-particle 
correlation function. 

(13) 

Figure 1. Diagrammatic representation of 
-(tk I ln(1 - cf,W I k>)ave. 

If the n-' factors were not present, we would be able to sum up 
" propagator renormalization " diagrams of all orders. Indeed, 
since these diagrams differ from ordinary Green function diagrams 
only by the lack of a Go line on their right hand ends, the sum of all 
diagrams omitting n-l factors would be (Q - Go) Go-'. 

The troublesome n-l factors can be eliminated if we consider instead 
the expression - h(d/dh) In (1  - GoXW). This can be represented 
by the same diagrams as in Fig. 1 except that now the vertex 
corresponds to h < k I w I k' > and the n-1 factors are absent. 
Examining the set of diagrams, we see that they are those for the 
ensemble average diagonal matrix element of (G,  - Go) %l, or 
equivalently of QA hW. Here we have defined a Green operator 

(14) Q, ( E )  = [E - H o  - h W (A!)]-'. 
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E N E R G Y  D I S T R I B U T I O N  O F  ELECTRONIC STATES 171  

Its ensemble average diagonal matrix element can be written in the 
form 

(< k 1 G I  ( E )  I k > >ave = [E - k2 - .C, (k, E)]-’, (15) 
where the self-energy function ZL (k, E )  is defined by this equation 
and is formally given by the sum of all irreducible diagrams 
(Edwards, 1958, 1962; Ballentine, 1966). 

The result of this diagrammatic analysis is 
d 

dA )ave 
- < k 1 A-In ( 1  - Go AW) I k > 

= ( < k I ( G , - G o ) G , l I k > ) a v ,  
= Zl (k, E )  [E - k2 - Zi (k, E)]-’. (16) 

The problem of evaluating (12) is thus reduced to the computation 
of the self-energy function ZL of a Green operator containing A W as 
the potential energy, and familiar techniques and approximations 
(Ballentine, 1966) may be used. 

The result (16) can also be derived algebraically without reference 
to diagrams, as is done in the appendix, but i t  is unlikely that we 
would have discovered i t  without diagrammatic analysis. 

Writing 

(17) 

we have, from (16), 

where L3 is the normalization volume. 
tion (12) becomes 

In terms of M ( A ,  E )  equa- 

In (19) it is understood that N ( E )  now represents the ensemble 
average number of states. 

Although we have overcome the problem of an energy dependent 
model potential in calculating the number of states N ( E ) ,  we are 
now unable to determine any spectral information about the states. 
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172 T. CHAN A N D  L. E. B A L L E N T I N E  

Just as the diagonal matrix element of the Green operator (1) yields 
the spectral function p (k, E ) ,  (3), whose trace is the density of states 
per unit energy (a), so the diagonal matrix element of In ( H  - E )  will 
yield the quantity 

But it was necessary 

p(k, E') dE'. 
J - m  

for us to replace In ( H  - E )  by another operator 
with the same trace (using (11)) in order to do perturbation theory. 
Thus we have given up the possibility of obtaining information about 
the spectral function. 

4. Application to Bismuth 
To apply Eqs. (18) and (19) in a practical calculation we have to 

evaluate ,ZL (k, E )  for dserent values of the parameter h between 0 
and 1. We evaluate Z1 (k, E )  by solving self-consistently the integral 
equation (see Ballentine 1966) 

u (k, k', E)le a(/ k - k I) d3k' ZL (k, E )  = nX u (k, k, E )  + - E - k" - Z, (k', E )  

where (20) 

u(k,k',E) = L 3 < k ' I w ( E ) I k >  

exp ( - ik'. r') < r' I w ( E )  I r > exp (ik . r) d3rd3r' 
= ss 

is the Fourier transform of the model potential, n = NIL3 is the 
atomic density and a (I k - k I) is the structure factor measured by 
X-ray or neutron diffraction experiments. Here we have employed 
the units A = 1, 2m = 1 (m = electron mass) and a, ~ ? P / n z e ~  = 1 
(Bohr radius). It is to be noted that since a non-local model potential 
will be used, the first order term depends on k and E ,  and therefore 
cannot be set equal to zero by a shift of the origin. In  terms of dia- 
grams we are approximating the complete series of irreducible dia- 
grams by the partial sum on Fig. 2, as in Ballentine (1966). 

The structure factor of Bi (at 300OC) has been taken from the 
neutron diffraction data of North, Enderby and Egelstaff (1968). 
We have used the non-local energy-dependent model potential of 
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Figure 2. Diagrams summed by the integral Eq. (20). 
> 

Heine and Abare.nkov (Heine and Abarenkov, 1964, Abarenkov and 
Heine, 1965, Animalu and Heine, 1965). Certain local potential con- 
tributions have been treated slightly differently from those papers, 
for reasons which are not particularly important here. Our Fermi 
energy shell form factor is shown in Fig. 3. 

In  order to solve Eq. (20) we first transform the integral into polar 
co-ordinates with the polar axis along the direction of k so that 

0 

-0.1 

(Ry 1 
-0.2 

-0.3 

-0.4 

-0.5 

Figure 3. Model potential form factor for Bi. Solid curve: Fermi energy 
shell form factor used in this calculation. Dashed curve: Fermi energy shell 
form factor of Animalu and Heine (1965). Points: estimates of the node of 
form factor from liquid structure data (Cohen and Heine, 1970). 
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174 T. CHAN A N D  L. E. BALLENTINE 

The angular integral yields 
1 

f (k9  k', E )  = 1 I ( k ,  k', p, E )  l 2  a (d dp, (21 )  
-1 

with p being the cosine of the angle between k' and k and 

q = (k2 + k2' - 2kk'p)'''. 

It can be tabulated for different values of k and k', and need not be 
recalculated during the iterative solution of (20'). We use the 
assumed linear energy dependence of the model potential parameters 
A ,  ( E ) ,  and hence of u ( E ) ,  to obtain the value off a t  any energy E 
from its value a t  the Fermi energy. Equation (20') is then solved 
numerically by iteration for each particular value of E and A (with- 
out making any approximation similar to the " complex energy 
approximation " of Ballentine (1966)) .  Further numerical integra- 
tions as indicated in (18)  and (19 )  give M (A,  E )  and N ( E )  respec- 
tively. The results are shown in Figures 4 and 5. 

The numerical computation becomes inaccurate for very small 
values of A. However, the limiting value of M (A,  E)/A as A + 0 can 

14X10-3 
r 

M 
h 

I 

A 

M ( A ,  E)/A (per unit vohiine) versus h for several values of E. See Figure 4. 
(17) and (18)-for the definition of this function. 
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0 0.2 0.4 0.6 0.8 1.4 -0.2 

E(Ry) 

Figure 5. Number N ( E )  of electronic s t a b s  per atom below energy B, 
calculated for liquid bismuth at 300°C. Solid curve: calculated result. 
Dashed curve: best fitting free electron curve, corresponding to m*jm = 0.63. 

easily be obtained from (20') by treating X as a perturbation para- 
meter. The result for this limiting value is zero for negative E ,  and 
for positive E it is 

nu (K, K, E ) K ,  with K P  = E.  1 
4na 

_ -  

Because the model potential parameters A ,  ( E )  are tabulated at 
the Fermi energy (Animalu, 1965), we must first estimate the position 
of EF on our energy scale before we can begin the calculation. Using 
first order perturbation theory, we estimated it to be 0.246 on the 
scale of Fig. 5. However, i t  turns out that N ( E )  equals 5 electrons 
per atom at E = 0.146. In  principle, one could corfect this in- 
accuracy of the first order initial approximation by readjusting EF, 
the energy for which we use the tabulated parameters A ,  (EF) ,  until 
it became self-consistent with the energy value for which N ( E )  equals 
5 electrons per atom. Because of the very large amount of computer 
time needed for this calculation, we have not carried out this itera- 
tion to obtain a self-consistent Fermi energy. This means that the 
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176 T. C R A N  A N D  L. E. B A L L E N T I N E  

model potential form factor which was actually used in the calcula- 
tion a t  the point marked EF on Fig. 5 was not the Fermi energy shell 
form factor shown in Fig. 3, but instead i t  was the form factor corre- 
sponding to an energy shell 0.1 Ry lower. The difference between 
these two form factors is very small (- 0.005 Ry), and it is not 
likely to have a significant effect on the final results. 

5. Discussion 
The distribution of electron states (Fig. 5) calculated for bismuth 

has very little structure, and does not differ greatly from a E3I2 free 
electron curve modified by an effective mass. (The zero of the 
energy scale has no absolute significance.) This can be seen more 
clearly in Fig. 6, where we have plotted N2I3 versus E. The lower 
portion of the curve is well fitted by a straight line, which we have 
extrapolated from our lowest computed point ( E  = - 0.65) to the 
bottom of the band. We obtain a bandwidth of 1.18 Ry, compared 

E(Ry)  

Figure 6. 
curve is now a straight line. 

Similar to Fig. 5 but N*’* plotted. The free electron (dashed) 
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with the free electron bandwidth of 0.74Ry. 
bandwidth effective mass is 0.63 m. 

The corresponding 

If one solves the first order perturbation equation, 

E = k2/2m + < k I W (E) I k >, 
and fits the solution to  the form E ( k )  = k2/2m* + E,, one obtains 
m*/m = 0.87 (the same value was also found by Weaire (1967)). 
The smaller value of our bandwidth effective mass may be attributed 
to higher order contributions, and in particular to the energy de- 
pendence of the off diagonal matrix elements of the model potential. 
The fact that E (k) does not really exist for a disordered system may 
also be relevant. 

No remnance of the structure found in the density of states by 
Ballentine (1966) is apparent in our results. However, if his curve of 
the density of states per unit energy were integrated with respect to  
energy it would yield only a very small perturbation in N ( E ) .  
Furthermore, the non-local and energy dependent nature of our 
present model potential would tend to smooth out such structure, 
aa was discussed in section 1. 

The curves of M (A, E)/h suggest some structure near E = - 0.55, 
but i t  does not show up on the curve of N ( E ) .  

The model potential which we have used was considered to be the 
best available a t  the time when the calculation was begun. Since 
then i t  has been demonstrated (Evans et d., 1969, Evans, 1970) that 
the linear extrapolation of the model potential parameters A ,  ( E )  
from the energies of excited ionic states to the energies of the con- 
duction band in a metal (a$ was done by Animalu and Heine (1965)) 
may be inaccurate if the highest core level is a d-state. More reliable 
values of A ,  (E) and dA,ldE a t  conduction band energies can be ob- 
tained by a nonlinear extrapolation using the quantum defect 
method (Ham, 1955). Evans showed that this nonlinear extrapola- 
tion has important consequences for mercury, in which the highest 
core levels are very close to the conduction band, but it is not known 
how important these effecta would be for bismuth. 

Appendix. Non-diagrammatic Derivation of Eq. (16) 

If A ( A )  is an operator depending upon a parameter A, then the 
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178 T. CHAN A N D  L. E. B A L L E N T I N E  

usual rule of calculus 

d (In A)/dX = A-1 dA/dh 

is valid, in general, only if the two operators A and dA/dh commute. 
For A = (1 - G,XW), this condition is clearly satisfied. Hence 

d 
- A-In (1  G,XW) = X ( l  - G,XW)-l GoW a h  

= (Gi'  - hW)-'XW 
= ( E  - H ,  - hW)-1 xw 
= a,xw. 

It is not convenient to calculate the ensemble average of this ex- 
pression because both factors G, and W depend upon the arrange- 
ment of the ions. However, with a little manipulation one obtains 

G,  XW = G, (ail - 4') 
= (G ,  - Go) Gi'. 

This can be averaged directly because only G, depends upon the 
arrangement of the ions. Equation (16) now follows immediately 
upon taking the diagonal matrix element in momentum representa- 
tion. 
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